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ON BOATTAIL BODIES OF REVOLUTION HAVING MINIMUM WAVE DRAG 1

By KEITHC.tim and CONEADRmNWANN, JFL

SUMMARY

T/wproblem of ddermining the shape of skna% boa.tid
bodia oj revolution jor minimum we drag luM been reex-
amined. It was jound Lid minimum sohdims jor Ward’8
slender-body drag equu$ion can aid only jor the redtid
clam oj bodia for which the rate of o?hzngeof erosssectimud
area at h base is zero. In order to elimina$ethti restm”ction,
certain higher order terms mwt be retained in the drag equation
and iwperimeti relutiom. The minimum problem for the
isoperinw~ conditions oj gt”venlength, volume, and bme area
is treatedw an exumple. According to Ward)8 drag equu$ion,
the resulting body shapm have slightly km drag than those
det-ermimd by prm”ous inv~tigators.

INTRODUCTION

An approximate expression for the wave drag of slender
bodies of revolution having zero rate of change of crosa-
sectional area at the base was first given by Von K4rm6n
(ref. 1). By using this expression, together with the calculus
of variations, several investigators (refs. 1 to 3) have deter-
mined minimum-wave-drag bodies for various isoperimetric
conditions. Later, Ward (ref. 4) derived the slender-body
approximation for the drag of bodies with a nonzero rate of
change of cross-sectional area at the base.

In reference 5, Adams considered severaJ rninimum-wave-
drsg problems on the bssis of Ward’s equation. In each case
he concluded that the minimumdrag body had zero slope
at the bnse. This conclusion implied that the minimum
shapes for Ward’s equation are the same as those for Von
KfirmLn’s. Recently, Parker (ref. 6) presented a diiferent
eqmmsion for the wave drag of slender bodies and showed
that the optimum body having given length and base area
has a finite slope at the bsse. Clearly, this result is not in
agreement with that obtained by Adsms.

In the present report, the problem of determinhg
minimumdrsg boattail bodies of revolution on the bssis of
linear theory is reexamined with particular emphssis on the
choice of drag equation, isoperimetxic relations, and method
of calculating the body shape. The minimum problem for
the isoperimetric conditions of given length, volume, and
base area iE treated as an example.

DISCUSSION OF MINIMUM-WAVE-DRAG PROBLEM

Wdhin the approximations of linear theory, the supersonic
flow psst slender bodies of revolution ean be represented by
a distribution of sources akmg the axis of the body. The
wave drag D of the body may be related to the source
distribution (ref. 1) by

kD—. —
P SS: ,rf’(w(oh%.k+bd.t(1)

provided the source distribution j(z) is zero at the nose and
the base (i. e., j(0) =j(l) =0) where p is the strewn density
and U is the stream velocity. The coordinate system is
shown in the following sketch:
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In the slender-body approximation, the source strength is
related to the body cross-sectional-area distribution A(z) by

j(z)=g=2dww (2)

and the restriction that j(Z) =0 impli~ that either the body
is closed (R(l) =0) or that the body has zero slope at the
base (R’(l) =0).

Several investigators (refs. 1 to 3) have determined mini-
mum-wave-drag bodies for various isoperimetric conditions
by applying the ealcuhs of variations to equation (l).
However, w a result of the rdction that t(1) =0, these
shapes can be considered optimum only for the rwtricted
class of bodies having zero rate of ohange of cross-sectional
area at the base.
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WARD’SDRAGEQUATTON

h equatiori which does not have the restriction that
f(1)=0 was proposed by Ward (ref. 4) on the basis of slender-
body theory as

4zD—. —SSPm :0‘f’(z)f’(i)logelz-El& &+

BR(l)
Zf(oJ:f’($)ku-ws—fw hk -nj- (3)

where P= ~~ and M is the Mach number. The source
strength is again related to the body geometry by equa-
tion (2).

The problem of determiningg the source distribution which
minimizes the drag given by equation (3) for given isoperi-
metric conditions without specifying the value off (Z)at the
outset is a variable end-point problem of the calculus of
variations. In appendix A this problem is considered for
a general type of isoperimetric condition where it is show-n
that, if a mathematical minimum esists, it satisfies the con-
dition ~(.1)=0. The significance of the mathematical solu-
tion obtained by the variational procedure warrants furth6r
consideration since the variational procedure assumes the
existence of a solution at the outset and, consequently, can
lead only to necessary conditions for the attainment of an
estremum. Three mutually exclusive possibilities must be
considered:

(1) A minimum for Ward’s equation exists for the cla=
of bodies having all values of the slope at the base and
sa$isfies the condition j(Z) =0. .

(2) A minimum for Ward’s equation exists only for the
restricted class of bodies for w%ich~(Z) =0.

(3) No minimum exists for Ward’s equation.
A single example, not satisfying the condition j(Z) =0 but

having less drag than the shape obtained by the variational
procedure, is sufficient to eliminate the &at possibility.
Perhaps the simplest example is the cone which, for given
length and base area, has less drag than the variational min-

R(l)imum (Von K&m&n’s ogive) for /3 ~ z 0.164. However,

a more illuminating example is given by the body

A(z)= ‘(0
[

z+(l’—
( )1z)lo~ 1—$ (Osxsl) (4)

1+-Elog, ;

where A(J) is the base area, l’=l+e, and E is a parameter
related to the slope at the base R’ (/!)by

R(l) log, ;
R’(l)=

( )
2 l+elog. ~ .

1’

For this body, Ward’s equation (eq. (3)) gives the result timt,
for small q

( )}C/lJo—
loge ;

which approaches minus infinity as c approaches zero; that is,
as the slope and curvature at the base both approach infinity.
(The mathematical symbol 0( ) denotw the order of n func-
tion.) The body shape for e= O is shown in the following
sketch:

In order to decide between. the second and third possibil-
ities, it would be necessmy to prove the esistence or non-
existence of a minimum solution for Von Kfirm6n’s drng
equation (eq. (l)). Such a study is beyond the scope of the
present report; however, it should be noted that the min-
imum solutions obtained for Von K6rmfm’s equation hava
provided a useful guide in the search for low-drag shwpes,
It is in this same vein that, later in the report, minimum
problems are considered on the basis of a different drag
equation. Since existence proofs are not attemptccl, tlm
most that can be claimed is that, if a solution exists, it must
have a certain mathematical form. However, in order to
avoid the repetition of this qualifying remark in the remainder
of the report, solutions obtained by the calculus of variations
are referred to a-sminimum solutions.

The problem under discussion has been previously conskl-
ered by Adams (ref. 5) who correctly determined the neces-
sary conditions for a minimum. His interpretation of theso
conditions was that the optimum boattdl body has zero mto
of change of cross-sectional area at the base. However, I11O
proper interpretation is that, if a minimum exists, it exists
only foy the restricted claw of bodies having zero rato of
change of cross-sectional area at the base.
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PARERR’S DRAG EQUATION

From the preceding discussion, it is clear that Wsrd’s drag
equation (eq. (3)) cannot be used to detemine minimum-
drag boattail bodies.’ Parker (ref. 6) has show-n that applica-
tion of the calculus of variations to the drag equation

which he obtained on the basis of linear theoly, yields a
minimum without the restriction that j(Z) = O for the isoperi-
metric conditions of given length and base area. The body
shape so determined has a finite slope at the base and lW.S
drag than the mathematical minimum for equation (3).

Equation (6) contains some higher order terms which are
not included in the slender-body approximation to the dmg
(eq. (3)) since Parker did not make the slender-body approxi-
mation to the velocity potential in the derivation. Appar-
ently, the additional terms are necessary in order to obtain
minimum-drag shapes without the restriction that j(l) =0.
However, it should not be inferred that equation (5) necea-
mrily gives a better estimate of the drag of bodies satisfying
tho assumptions of slender-body theory than equation (3).
Lighthill (ref. 8) has shown that the slender-body equations
(eqs. (2) rmd (3)) me fully RS accurate as the linearized dif-
ferential equations of motion for sticiently smooth bodies.
Consequently, the slender-body results are theoretically
equivalent to those obtained without making the slender-
body approximation.

ISOPERIMETRIC CONDITIONS

The isoperirnetric conditions most commonly considered
have been those of fixed length, volume, and base mea. In
order to carry out the mathematical details of determining
the source strength which minimizes the drag, the isoperi-
motric conditions must be directly related to the source
strength. The simplest relations would appear to be those
given by slender-body theory. However, in order to carry
out the analysis on the basis of Parker’s equation, certain
higher order terms must be retained in the isoperimetric
relations. In particular, the limits of integration in the
isoperirnetric relations must be the ssme RSthose in the drag
equation. Furthermore, the analysis can sometimes be
simplified by including certain additiomd higher order terms
in the integrahd of the isoperimetric relations.

The relation between the isoperirnetic conditions and
source strength used in the example to be treated in the
present report is obtained by approximately satisfying the
boundary conditions on a con6 passing through the nose

tE.smntMIYthomnreargumormem be usedto showthat Ll@thtWs”dm8eqnat[en (ref.
7), whloh vrosderived for slender@h8pa with dfsconthmlth in slope,rannot be used to
detcrnduomkdmumdreg hodleswith mrnei%.

rmd baae. The linear-theory expression for

where r is on the body surface. Equation
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A’(x) is

(6)

(6) is approxi-
mately satisfied by evaluating the integral on tho cone

r=R(l) ~. Then,

from which, with 6=/3 ~,

J
Z(l-6)

A(x) s f’(f) d(~–f)’–a’d d+
o

and

A(i) z~(l-’) Y(Ol(J-0’-a’l’ a (8)

where use has been made of the condition j(0) =0. Simi-
larly, the volume V is given appro.simately by

J
VJ 1(1-’)

20 (i–t)j’(t)3/(1–t)2 –a’l’ df (9)

In the derivation of equations (8) and (9) from equation (7),
terms of the order of &logJ have been neglected. The
slender-body approximation to the isoperimetrk relations
is obtained by equating 6 to zero in equations (8) and (9).

CALCULATION OF BODY SHAPE

When the calculus of variations is applied to the drag
equation and isoperimetric relations, the resulting source
strength for minimum drag contains several constants to
be determin ed from the isoperimetric conditions. The”
calculation of these constants and the body shape can be
treated independently of the minimization process.

Since higher order terms have been retained in the drag
equation and isoperimetric relations, the question arises
as to whether similar terms should be retained in the body-
shapo calculation. Theoretically, the inclusion of th~e
terms does not atlect the accuracy of the result for shapes
satisfying the assumptions of slender-body theory. Even
so, it is interesting to compme the various body shapes
obtained horn the source distribution

m=~lk[l+mo-tl (lo)

found by Parker to give minimum drag for the isoperinmtric
conditions of given length and base area. In equation (10),
K ,is a constant to be determined horn the isoporimetrio
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conditions. The numerical value of K depends on the method
used to calculate the body shape.

Parker oahmlated the body shape from this source distri-
bution without making the slender-body approxhation by
numerically solving the integral equation

The body shape calculated from equation (10) by means of
the slender-body expression A’(z) =j(z) is

A(z)= & [t~+cos-’[–t)] (–1 s .tSc) (12)

where !

x l+t ~= A (1) =1–@2(l)
Z=W-c’2(1+C)’ ~~+~s-1 (–+ ‘ and c 1+/9R(l)”

When the expression A’(z) =f(z)’is alteredto take partially
into account the fact that a given point on the body is
influenced only by smnves in the upstream Mach cone by
equating

(13)

the body shape is given by

“K [t JR+ COS,-1(–t)] (–1 s ts2c–1)A(z)=4(1+C)

where
#z ~

J
and

~= A(l)
~(l+c) 2(2–1) ,~)+cos-’ (1–2C)

The body shapes calculated by means of equations

(12), and (14) for ~ ~= 0.2 are oompared in figure 1.

(14)

(11),

The

dMerences between the shapes are small even for this rather

‘(Z) the &ffer-‘(1) For ~a~er v&dUeSof ~ ~large value of ~~

R(l)
ences are even less and the shapes become coincident as/3 ~

approached zero. Similar ‘body-shape ~calculations based on

9

&

I I I I i

— Ftlrker(eqol))Q .3 ‘— %ldK kdy (4. (12))
j —— MxflfkdSkdw L@ (q(14))
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FIQUZE l.—(lmnparizon of body sbap~ caIouIated from souroe ditrsf-

bution given by equation (10) by various methods for@ y=o.2.

equations (2) and (13) for the source strength that is derived
in the example (iixed volume, length, and base area) were

R(l)
performed for /3~= 0.05 and several values of ~ $ where

V is the volume. This comparison is not presented since the
body shapes obtained by the two methods are ahnost iden-
tical. Evidently, the difference in body shape is appreciable
only for shapes that cannot be considered slender. Cons&
quently, the simpler slender-body relation is preferable.

The discussion concerning the inclusion of higher order
twins is briefly summwized as follows: Higher order terms
must be retained in the drag equation in order to obtain the
minimum-drag boattaiI body; having done this, higher order
terms must also be retained in the isoperimetric relations in
order to perform the analysis. Once the source strength for
minimum drag has been determined within several unde-
termined constants, higher order terms need not be retained
in the calculation of the shape and drag of bodies satisfying
the assumptions of slender-body theory.

PROBLEM OF LENGTH, VOLUME, AND BASE AREA

The problem of determiningg the body shape that gives
minimum wave drag for fixed length, volume, and base mea
is treated in order to illustrate the ideas developed in the
preceding sections. The minimum-drag body hwing given
length and base area or given length and volume can be
obtained as special cases of the problem under consideration.

The source distribution for minimum drag is obtained by
applying the calculus of variations to equations (6), (8),
and (9), and as show-n in appendix B, this leads to the source
distribution

j(O=(a+W{&[Z-~+@ (01 (16)

whare a and b are constants to be determined from the
isoperimetric conditions.

As discussed in the previous section, the body shapo is
determined on the basis of the slender-body equations.
Integration of A’ (z) =f(z) gives

{
A(z)=& # ~t~+cos-’ (–t)]–: (l–tT/g

}

(–l~t~c) (16)
where

~_l+t l–/3R(l) ~_l+BR(O b
1 l+C c=l+flR(l) – 2.

and

The base area is given by

{

12 A

AW=(l+c), ~ [CJ=7+COS-1 (–c)]–; (1–cqa/*
}

(17)

The volume is obtained from equation (16) as

v=2(&
{[ 1A C COS-l (–C)+~&—; (1 —~3/g -

B%
[T T (1–~8’2+c’E+cOs-1 ‘–c) 1} (18)
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Equation (16) for A.(x) (with the use of eqs. (17) and (18))
reduces to the minimum-drag body shape given by Haack’
(ref. 3) and Adams (ref. 5) when c=l. In this case, A(z)
is given by

Am [~~+cos-1 (–t)]+A@)=-
%-

:[?-A’z)l(’-’~3’21=’=’)’)‘1’)
where

x l+t-. —
12

This body waa obtained by Haack on the basis of Von
I&m6n’s drag equation (eq. (l)) and by Adams on the
basis of Ward’s drag equation and is referred to in the
remainder of the report as the Haack-Adams body.

The constants A and B in the equation for the body
shape (eq. (16)) are determined from equations (17) and
(18) in terms of 1, ~, I?(Z), and l“. The solution may be
expressed as

P’A=Al–A@ ; (20)

and

/32B=B,-B@ ; (21)

‘(z) Vahm ofwhere Al, Ag, Bl, and B’ are functions of f? ~.

R(1)
Al, A’, B,, and B’ are given in table I for values of /3 ~

botwem 0.01 and 0.10.

A direct comparison of the drag of the body of the present
report with that of the Haack-Adams body is made on the
basis of Ward’s drag equation. From equation (3), the drag
of the source distribution given by equation (16) is

D 1 12
(

A’{ [COS-’(–C)]2+!k~ COS-l (–C)–
~=%r (1+C)2

(1–c’)} –4AZ3(1-C’)[C+ ~ cm-’ (–c)]+

Bs
~ [(2–5c’)(1-c9+2ce (2c’-1)COS-’ (–C)+

(cOS-’ (–c))’1+2(A+Bc)2(1 -c’)loge [4(1+c)]) (22)

TABLE I

COEFFICIENTS OF EQUATIONS (2o) AND (21)

a IO
.09
.C@
.07
.Im
.06
.04
.03
.02
.01

PA-AI–Az+

(HI. (m))

-4

PB=IB,-Bz+

(@l. (m)

B,

a!-i3w4
.21929
.17ml
.12s92
.10I21
.mm
.040443
.CWm3
.Oml
.malol’

The drag of the Haack-Adams body is

The form of equations (20), (21), and (22) indicates that

E(O ~ fiwe 2, the dr%~isafunctiono f~~and fl~

of the Haack-Adams body (eq. (23) ) and the drag given by
equation (22) me plotted on a logarithmic scale for several

‘(i) To help orient the reader, several bodyvalues of /9 ~

R(1)
shapes me shown for ~= 1, ~=0.05. The drag given by

equation (22) is somewhat less than that of the Haack-

Adams body for most values of P ~ For example, for

~ R(1)
—=0.05 and & ~=0.01, which represents a fuselage

1
type shape, the body given by equation (16) has approxim-
ately 7% percent less drag than the Haack-Adams body.

Each drag curve begins at a particular value of 13’ $>0;

for a given value of p
R(l)
~ smaller value9 of @ J give rise

to negative body areas.

‘(Z) the slope at the base of theFor a given value of B ~

body is positive for small values of&~ and is negative for

large values. The two drag curves become nearly tangent

at intermediate values of f?s ~ for which the body slope at

the base is near zero. Actually, the Haack-Adams body
must have less drag for this condition since this body gives
minimum drag for Ward’s equation for the class of bodies
which have zero slope at the base.

The value of & ~ for minimum drag is obtained, for a

‘(q by equating B to zero in equationsgiven value of 9 ~.

(17) and (18). This procedure gives the optimum body
having a given length and b~e area.

In iigure 3 the body shape of the present report is com-
R(Z)

pared with the Haack-Adams body for B ~= O.O5 and

& ~=0.003 and 0.02. The bodies are plotted to an expanded

vertical scale (expanded 5 times) to illustrate the diilerences
which for the most part are small. The most significant

diilerence occurs near the baae for the larger values of /3’ $

where the body given by equation (16) does not exhibit the
reflex shape of the afterbody characteristic of the Haack-
Adams body.

The effect of Mach number on body shape is illustrated in
iigure 4 where the optimum shapes (vertical scale enlarged

R(l)
2X times) for ~= 0.05 and ~=0.02 are compared for

M=@ and M=fi. The body shape of the present report
exhibits a small dependence on Mach number, whereas the
Haack-Adams body is independent of Mach number.
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FIGURE2.—Cemparkon of drag given by Ward’s equation for Hahck-Adams body and body given by equation

for p ‘~0—=0.05.
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J4
— Equotion (22)
—— Hoock-Adorns

J2

d

1k- “0
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I
03 n2 v .-.

n 1 1 I I I I ~ I

/1 I

Axiol coordinate, x/L

FIGUItE3.—Comparieon of Haack-Adama body with that given by
R(l)

equation (22) for p~=O.05.

CONCLUSIONS

The problem of deter mining the shape of slender bo&ttail
bodies of revolution for minimum wave drag has been re-
examined and the following conclusions are indicated:

1. Minimum solutions for Ward’s drag equation can twist
only for the restricted class of bodies for which the rate of
change of cross-sectional area at the base is zero.

2, In order to eliminate this restriction, certain higher
order terms must be retained in the drag equation and
isoperimetric relations. However, higher order terms need
not be retained in the calculation of drag and body shape
from the source distribution.

.16

.12

3:-

q-m
.-
-0
s

Iiiiiii iii
,,,—-#&

I
I I I I [ I %1 I

-s24 Y

/l/

o J .2 .3 4 .5 .6 .7 .8 9 10
Axiol comdinote, x/1

I?murm 4.-EEect of Maoh number on body shape given by equation

(22) for$=O.02 and R=~=O.05.

3. Adams in NACA Teohnioal LTote 2550 correctly deter-
mined the necessary conditions for a minimum for Ward’s
drag equation. His interpretation of these conditions was
that the optimum boattail body has zero rate of change of
oross-sectional area at the b~e. However, the proper inter-
pretation is that, if a minimum exists, it exists only for the
restricted class of bodies having zero rate of change of crcss-
sectional area at the base.

4. Application of the idws expressed in conclusion 2 to
the minimum problem of given length, volume, and base area
led to body shapea which have slightly 1=s drag than the
Haack-Adams body.

LANGLEY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR hRONAUTICS,

LANGLEY FIDLD, VA., June 8, 1966.

APPENDIX A

APPLICATION OF CALCULUS OF VARIATIONS TO WARD’S DRAG EQUATION

In this appendix the calculus of variations is applied to
Ward’s drag equation (eq. (3)) for a generrd type of isoperi-
metric condition to determine the source strength for mini-
mum drag when the source strength at the base j(l) is not
specified at the outset. From equation (3), Ward’s drag
equation is

The usual isoperimetric conditions considered maybe related
to the source strength by expressions of the form

J1,= ; j(~)g,(~)d~ (A2)

For example, g(t) =1 for fixed base area and g(~)= (1–t) for
&Yed volume. In the subsequent analysis, it is assumed that
one of the isoperimetric conditions is that of il.xed base area.
This assumption simpli6es the analysis without restricting
its generality.

In the derivation of equation (A1.}it is assumed that

f(o)=o (A3)

Equation (A3) gives one of the end-point conditions to be
satisiied by the mhkizing source distribution. At the other
end point, x=1, the value of j(x) is not prescribed.

The source distribution for minimum drag is obtained by
considering the variation of the function

J=4zD
-#z M, (A4)

where the Lagrange multiplied ki are determined from the
isoperimetic conditions. The variation of equation (A4)
is obtained by considering the one-parameter family of com-
parison functiom (see ref. 9, for example)

j(z) =F(z) +eq(z) (A5)

where F(z) is the function which minimizes equation (A4),
e is the parameter of the family, and q(z) is an arbitrary func-
tion within the condition

q(o)=o (A6)
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This condition arises since all the comparison functions must
satisfy the same end-point condition as the mhimking func-
tion. Since no end-point condition is prescribed at x=1,
q(l) is arbitrary.

From equations (A4) and (A5), Jis a function of c and the
source strength for minimum drag is determined from the
condition

where the equation has been simplified by several integra-
tions by parts and use of equations (A3) and (A6).

Since equation (A7) must hold for all choices of ~(.f) con-
sistent with equation (A6), it must in particular hold for

those choices

J
1
0

and from the basic lemma of the calculus of variations (ref. 8),

~ JF(z)dx_J6%, z–:Z$M) (As)

With this result, and for general ~(~) once again, that is, ~(l)
not necessarily equal to zero, the end-point condition ob-
tained is that

[ 1N--i)=“g?‘(z)10%lm(z) (A9)

In order to satisfy this condition, F(l) must equal zero. Con-
sequently, the body shapes which give a mathematical
minimum for Ward’s equation, if they exist, must hmw zero
rate of change of cross-sectional area at the baae.

APPENDIX B

APPLICATION OF CALCULUS OF VARIATIONS TO PARKER’S DRAG EQUATION

The source distribution for minimum drag for the isope,rimetic condition of given length, volume, and base ama is ob-
tained by considering the variation of the function

@l)

where D, A(l), and V are given by equations (5), (8), and (9), respectively, and Xl and X9 are Lagrange mukipliera. By
proceeding in the same manner as in appendix A, the variation of equation 031) is obtained by considering the one-parameter
family of comparison functions.

j(z)=F(z)+ ,q(z) (B2)

where F(z) is the function which minimizes equation @l), e is the parameter of the family, and ?(z) is an arbitrmy function
within the condition 7(0)=0.

The source strength for. minimum drag is then determined horn the condition

(333)

where the equation h= been simplified by several integrations by parts and use of the conditions

F(o) =?J?(o)=0

Since equation (B3) must hold for all choices of v(~) consistent with 7(0)=0, it must in particular hold for those choices
of q(f) for which 7[1—f?l/(Z)]=O. For such q(.!j,

and fkom the basic lemma of the calculus of variations,

J
l-w(l)~(~)J(l.+-pip(l)

2— a+~l+ (1–@w-f9*lw=No z—~ 4(l_&-fyp(~
(B4)
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where iV is a constant. With this result, and for general
q(~), the end-petit condition is obtained as

[
@ (H)]w-t)’–pw’(l)

}
=0 (S5)

Sinoe equation (B4) must hold for all values of & and in
particular for ,+1-@?(Z), from equation (B5), iV=O. Hence,
~(1–~)2–/Pl?2(l) can be w-mceled from each term of equation
(B4) and the following integrrd equation is obtained for the
source strength:

The solution of equation 036) satisfying the condition F(O)
=0 is

F($)=j(g)=(a+z)f)Jt [i–t+lw)l (B7)

whoro a and h are constants related to X1and ~.
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